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  ABSTRACT  

 
 Clustering is one of the most universal unsupervised classification 

methods for partitioning objects into a set of meaningful clusters. The 

k-means clustering algorithm is a commonly used partitioning based 

clustering method for finding optimal number of clusters. However, 

number of clusters generated by k-means algorithm depends on the 

choice of centroid value which sometimes could be misled. 

Therefore, a new approach for identifying the optimal number of 

clusters based on distance in k-means algorithm is proposed. The 

designed algorithm was tested using twelve sets of simulated data has 

revealed that the proposed algorithm is able to identify the exact 

number of clusters. 
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1. INTRODUCTION 

Problems in clustering objects is associated with finding an explainable structure in a 

collection of unlabeled data set. Clustering works by splitting n objects into k clusters such 

that the objects within the same cluster are similar and show some differences with objects 

in other clusters. Clustering offers better insight about a huge size of data by giving a 

compact representation in a form of clusters of objects. Nowadays, the exercise in 

recognizing clusters of objects has become popular and is widely used in many fields such 

as in geology, marketing, medical, meteorology, and finance (Gan, Ma & Wu, 2007; Liu et 

al., 2010; Kodinariya & Makwana, 2013).  

 

A process of clustering objects systematically is termed as cluster analysis. The 

process could be divided into hierarchical clustering and non-hierarchical clustering 

techniques. Among the well-known hierarchical clustering are agglomerative and divisive, 

while famous methods on non-hierarchical method include k-means and k-medoids. 

Hierarchical clustering is a tree like structure where it continuously combines similar 

objects until they are all in the same cluster. Meanwhile, non-hierarchical clustering 

divides objects into a pre-determined cluster. In dealing with large amount of data, often 

non-hierarchical clustering is preferable where k-means clustering algorithm always turn as 

the most preferred one. The technique determines a specified number of non-overlapping 

clusters within data and is widely used in several fields due to its simplicity and efficiency 

(Jain, 2010; Mihai & Mocanu, 2015).  

 Many studies were conducted to find number of clusters  using k-means algorithm 

(Milligan & Cooper, 1985; Kane & Nagar , 2012; Mehar, Matawie & Maeder, 2013; Muca 

& Kutrolli, 2015) where the centroids were sometimes based on initial guess. Such choice 

may end up with non-optimal clusters, hence identifying best possible initial centroids 

would be a good one. In the past, few studies were conducted to identify number of 

clusters using distance-based k-means algorithm (Napoleon & Lakshmi,  2010; Singh, 

Rana & Yadav, 2013).  

 The k-means algorithm was developed by MacQueen in 1967. The steps of k-means 

algorithm are as follows: 

 

1. Randomly select k objects from a sample, each of which initially represents a 

cluster centroid. 
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2. For each of the remaining objects, assign an object to a cluster to which it shows 

the most similar, based on the distance between the object and the cluster mean. 

3.  Compute mean for each cluster. 

4.  Repeat Step 2 and Step 3 until converges.  

 

The k-means algorithm works in minimizing the sum of the squared error function, 

which is very simple and can be easily implemented. 

J =
1

n
   x − mi x∈Ci
k
i=1

2
  

where J is the sum of the square error for all objects in the data set, x is the point in space 

representing a given object; and mi is the mean of cluster Ci and k is the given number of 

clusters.   

 However, these common steps face some drawbacks where uncertain number of 

iterations could be processed to determine the optimal number of clusters especially when 

inappropriate centroid value (k) was used. This paper aims at introducing a new algorithm 

for determining the number of optimal clusters using Euclidean distance in k-means 

clustering algorithm. The proposed algorithm was tested by using simulated multivariate 

data.   

 

2. RESEARCH METHODOLOGY 

2.1 Euclidean based distance of k-means algorithm 

Determining the optimal number of clusters in a dataset is the main issue in the k-means 

cluster algorithm, which requires the user to specify number of clusters to be generated. 

Thus, this study proposeda new distance based k-means algorithm to find the best number 

of optimal clusters of available data. For this technique, the Euclidean distance was chosen 

as a measurement of the distance between objects due to its simplicity and easy 

computation for numerical multivariate data. The proposed study is to find  the best k, such 

that adding more clusters will not cause major changes in term of amount of separation 

between the clusters. The proposed method is describedin Algorithm 2.1. 

 

 

 

 

(1) 



 ISSN: 2320-0294Impact Factor: 6.765  

114 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

Algorithm 2.1:  Proposed k-means Algorithm using EuclideanDistances 

 

Step 1:   Set the counter k=2, where k represents the number of cluster. 

1.1 Identify the centre of each cluster k, Cjk , where j=1,2,…,k. 

1.2 Perform k-means clustering analysis on the data set using the 

identified centres from step 1.1. 

1.3 Compute distance between centres, label as dk 

Step 2:   Add 1 to the previous value of k, so k=k+1 

1.1 Repeat steps 1.1-1.3. 

1.2 Compute the different of two distances at k and k-1. 

1 kki dd    where i=1,2,… 

2.3  Compare  ,mi   if true store k-1 as optimal cluster, otherwise 

repeat step 2. 

 

 

Detemining the constant value m 

The constant value of m is derived from the scatter plot of different distance   against k-

value. The peak value  hsay  for the graph is determined from the point where the trend 

moves in a downward trend without more fluctuation. Then, m can be determined by 

taking average of the first three points such as 11 ,,  hhh and . These points are marked in 

Figure 2.1. 

 

 

 Figure 2.1.Scatter plot  

 

2.2 Cluster Validation Measures 

)2(6,...,3,2;
3

)( 11 


  hm hhh   
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A clustering process was measured to ensure that the obtained clusters are correct to 

explain patterns of clusters in the data. In this study, Dunn and Calinksi Harbaz indices 

were used to evaluate the clustering results. Both indices are briefly described below. 

 

2.2.1. Dunn Index  

This Dunn index define as the ratio between the minimal intra cluster distance to 

maximal inter cluster distance. The Dunn index is as follows: 

 

 

Where d(Ci, Cj) is the distance between two clusters Ci and Cj as the minimum distance 

between a pair of objects in the two different clusters separately and the diameter of 

cluster Cl, diam(Cl), as the maximum distance between two objects in the cluster. The 

maximum value of Dunn index indicates that k is the optimal number of clusters. 

2.2.2 Calinski-Harabasz Index 

This index evaluates the validity of the clusters based on two measures that separation 

between cluster sum of squares (SSB) and cohesion within cluster sum of squares (SSW).  

The CH index is defined as: 

 

𝐶𝐻 =
𝑆𝑆𝐵/(𝑘−1)

𝑆𝑆𝑊/(𝑛−𝑘)
      

Where n is the number of observations and k is the number of clusters. The maximum 

value of Calinski-Harabasz index indicates that k is the optimal number of clusters. 

 

2.3 Data Simulation 

 In this study, the proposed k-means algorithm was tested by using 2-dimensional and 

3-dimensional data sets, defined by 50,100, and 500 objects, generated using a multivariate 

normal distribution from 2 and 3 groups (clusters) with different means and covariance 

matrices are tabulated in Table 1. 

 

 

 

 



Dk 
min

1 i  k

min

1 j  k

i  j

d(Ci,C j )

max

1 l  k
diam(Cl ) 
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Table 1: Features of simulated datasets with 2 and 3-dimensional data 

 

Data Number 

of 

clusters 

Number 

of 

variables  

Number 

of 

Objects 

 

Mean 

 

Covariance Matrix 

Data2_1 
 

 

 

 

 

2 

 

 

2 

50 
µ1 =  0,0  

µ2 =  3,0  
 
0.2500 0.0059
0.0059 0.1225

  

Data2_2 100 

µ1

=  −2,0  

µ2 =  1,0  

 
0.2500 0.0077
0.0077 0.2025

  

Data2_3 500 

µ1

=  0,0.5  

µ2

=  2.5,0  

 
0.2500 0.0005
0.0005 0.1600

  

Data2_4 

3 

50 

µ1

=  −2,0,0  

µ2

=  5,0,0  

 
0.4900 0.0588 0.0070
0.0588 0.3600 0.0000
0.0070 0.0000 0.2500

  

Data2_5 100 

µ1

=  0,0,0  

µ2

=  2,1,0  

 
0.0900 0.0168 0.0021
0.0168 0.1600 0.0000
0.0021 0.0000 0.1225

  

Data2_6 500 

µ1

=  −3,1,0  

µ2

=  4,0,0  

 
0.1600 0.0168 0.0036
0.0168 0.0900 0.0095
0.0360 0.0095 0.2025

  

 

Data3_1 

 

 

 

 

 

 

 

2 

50 

µ1 =  1,0  

µ2 =  3,0  

µ3 =  5,0  

 
0.0900 0.0029
0.0029 0.1600

  

Data3_2 100 

µ1

=  −1,0  

µ2 =  2,1  

µ3 =  5,0  

 
0.1600 0.0027
0.0027 0.0400
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Data3_3 

3 

500 

µ1

=  −3,0  

µ2 =  1,1  

µ3 =  5,0  

 
0.4900 0.0168
0.0168 0.3600

  

Data3_4 

3 

50 

µ1

=  −3,0,0  

µ2

=  5,1,0  

µ3

=  15,1,0  

 
0.2500 0.0028 0.0450
0.0028 0.1600 0.0306
0.0450 0.0306 0.2025

  

Data3_5 100 

µ1

=  0,1,0  

µ2

=  5,0,0  

µ3

=  9,1,0  

 
0.1600 0.0022 0.0120
0.0022 0.1600 0.0480
0.0120 0.0480 0.0900

  

Data3_6 500 

µ1

=  −3,0,0  

µ2

=  2,1,0  

µ3

=  7,0,0  

 
0.2500 0.0675 0.0300
0.0675 0.2025 0.0540
0.0300 0.0540 0.0900

  

 

3. RESULTS AND DISCUSSIONS 

 

 

 

3.1 Two and three-dimensional scatter plots  

Figures 2 and 3 show the two and three-dimensional scatter plots for simulated data (in 

Table 1) with two different number of clusters (k=2 &k=3). 
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Figure 1. Scatter plot for two group 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Scatter plot for three groups 

3.2 Results of proposed clustering algorithm 

The proposed algorithm was tested using two clusters of simulated data sets (such as 

Data2_1,…,Data2_6) to find the optimal number of clusters. The validity indices (Dunn 

index and Calinksi-Harabaz) and difference between consecutive clusters (Algorithm 2.1) 

is computed for each data set. In Table 2, the maximum values of Dunn and Calinksi-

Harabaz indices are obtained with k=2. These indices confirm that the number of clusters 

of the datasets is 2. Furthermore, all six datasetsmeet the corresponding condition of m

(in Algorithm 2.1) when k=2. Hence, the proposed distance-based k-means clustering 
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algorithm is more appropriate fordetermining the number of clusters. 

 

Table 2: Results for 2 clusters simulated data 

 

Data Set k Clusters of sizes 
Euc.di

s 
Dunn CH 

Diff 

 ( ) 
m 

Data2-1 

2 51,49 2.724 0.238* 471.994* - 

0.665 

3 45,16,39 1.333 0.130 326.302 1.391 

4 20,26,31,23 0.819 0.085 306.397 0.514 

5 12,24,20,31,13 0.729 0.081 272.245 0.090 

6 17,24,10,13,12,24 0.666 0.101 257.229 0.063 

Data2-2 

2 100,100 2.896 0.174* 907.551* - 

0.722 

3 99,54,47 0.880 0.039 596.245 2.016 

4 51,53,47,49 0.776 0.024 508.744 0.104 

5 47,54,31,36,32 0.821 0.050 471.120 0.045 

6 32,32,31,36,40,29 0.797 0.044 478.795 0.024 

Data2-3 

2 503,497 2.579 0.042* 4161.476* - 

0615 

3 494,236,270 0.816 0.009 2720.890 1.763 

4 233,268,266,233 0.760 0.009 2419.885 0.056 

5 265,159,235,165,176 0.734 0.008 2164.164 0.026 

6 167,170,159,171,163,170 0.741 0.008 2111.422 0.007 

Data2-4 

2 50,50 6.939 1.342* 1146.309* - 

1.969 

3 50,13,37 1.471 0.152 723.371 5.468 

4 23,27,37,13 1.246 0.044 633.597 0.225 

5 18,13,27,23,19 1.033 0.054 562.176 0.213 

6 18,14,13,21,15,19 1.028 0.076 515.996 0.005 

Data2-5 

2 100,100 2.246 0.338* 698.738* - 

0.542 

3 61,100,39 0.668 0.023 425.465 1.578 

4 54,39,61,46 0.621 0.024 347.182 0.047 

5 34,61,33,33,39 0.621 0.026 295.484 0.000 

6 36,22,34,42,33,33 0.621 0.052 270.131 0.000 

Data2-6 

2 500,500 7.084 1.431* 27313.650* - 

2.129 

3 500,280,220 0.808 0.021 16654.040 6.276 

4 277,220,280,223 0.741 0.019 13591.900 0.067 

5 149,280,220,173,178 0.697 0.024 11357.730 0.044 

6 150,146,149,190,161,204 0.679 0.022 10183.410 0.018 
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Similarly, the  three clusters ofgenerated data sets (such as Data3_1,…,Data3_6) were 

tested using the proposed distance based k-means clustering algorithm. In Table 3, the 

maximum values of Dunn and Calinksi-Harabaz indices are obtained with k=3, and this 

confirms that number of clusters of datasets is equal to 3. Moreover, all six datasets satisfy 

the corresponding condition of m (in Algorithm 2.1) when k=3. Therefore, the 

proposed distance-based k-means clustering algorithm is more appropriate to find number 

of clusters even without using validation indices. 

Table 3: Results for 3-clusters simulated data 

 

Data Set k Clusters of sizes Euc.dist Dunn CH Diff 

 ( ) 

m 

 

Data3-1 

2 52,98 2.926 0.067 331.483 - 

0.758 

3 50,50,50 1.934 0.350* 760.096* 0.992 

4 27,23,50,50 0.850 0.045 679.316 1.084 

5 27,23,23,27,50 0.651 0.049 630.694 0.199 

6 27,27,23,23,23,27 0.569 0.064 614.061 0.082 

Data3-2 

2 197,103 4.538 0.048 747.163 - 

1.304 

3 100,100,100 3.166 0.519* 4856.618* 1.372 

4 100,100,65,35 0.725 0.017 4094.605 2.441 

5 100,35,51,65,49 0.627 0.021 3916.461 0.098 

6 51,49,40,58,42,60 0.549 0.020 3922.115 0.078 

Data3-3 

2 945,555 5.943 0.013 3569.235 - 

1.601 

3 501,499,500 4.083 0.029* 9532.989* 1.860 

4 495,497,244,264 1.178 0.012 7391.813 2.905 

5 255,259,495,241,250 1.141 0.009 6496.045 0.037 

6 268,259,230,249,253,241 1.119 0.007 6280.588 0.022 

Data3-4 

2 50,100 14.081 0.686 557.015 - 

4.409 

3 50,50,50 8.148 1.556* 6312.207* 5.933 

4 50,25,50,25 1.037 0.109 4866.301 7.111 

5 25,23,27,50,25 0.853 0.081 4072.923 0.184 

6 23,29,27,21,31,19 0.825 0.087 3632.701 0.028 

Data3-5 

2 100,200 6.936 0.446 982.303 - 

2.081 

3 100,100,100 4.118 0.731* 4821.784* 2.818 

4 56,100,44,100 0.743 0.049 3601.604 3.375 

5 58,42,55,100,45 0.692 0.027 3065.732 0.051 

6 54,55,51,46,49,45 0.674 0.052 2754.829 0.018 
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Data3-6 

2 505,995 7.487 0.030 3891.489 - 

2.195 

3 500,500,500 5.067 0.600* 23128.390

* 

2.420 

4 500,248,500,252 0.947 0.015 17942.680 4.120 

5 252,248,248,252,500 0.903 0.015 15791.700 0.044 

6 252,248,248,252,248,252 0.865 0.015 15004.120 0.038 

 

4. CONCLUSION  

Clustering is an important field in data mining techniques, and many researchers use the 

cluster techniques to find the optimal number of clusters.  The goal of this paper is to 

determine the appropriate number of clusters using a new approach ofthe distance-based k-

means clustering algorithm.This proposed k-means algorithm shows that the number of 

clusters of simulation data is optimal.  Furthermore, the optimal number of clusters can be 

identified without using the validation indices.  In addition, this study will be an important 

platform for highlighting and discussing big data problems that determine the optimal 

number of clusters. However, this study can be improved when objects are overlapped and 

more groups in the datasets. 
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